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Abstract

Disagreement plays a fundamental role in the learning001
process, driving deeper understanding and improved gen-002
eralization. Inspired by the Socratic method, we intro-003
duce Disagreement Augmentation (DA), a novel approach004
to knowledge distillation that leverages disagreement be-005
tween teacher and student models as a learning signal. Tra-006
ditional distillation methods primarily focus on aligning the007
student with the teacher, minimizing divergence to transfer008
knowledge effectively. However, this approach may over-009
look critical underrepresented or ambiguous regions of the010
data distribution. Our method actively augments training011
samples to maximize disagreement between the student and012
teacher, encouraging the student to resolve conflicting pre-013
dictions and develop a more robust approximation of the014
teacher. We evaluate DA in both an image classification015
setting and a reinforcement learning setting, demonstrat-016
ing improved student model performance over typical base-017
lines. These results highlight the potential of disagreement018
as a powerful augmentation strategy in knowledge distil-019
lation. Code and implementation details are available on020
GitHub.021

1. Introduction022

Disagreement is a catalyst for learning. This principle,023
rooted in the Socratic method, highlights the role of produc-024
tive conflict in refining ideas and uncovering deeper truths.025
Socrates, through his method of dialectical questioning, of-026
ten encouraged his students to confront contradictions in027
their beliefs, leading to a richer understanding of complex028
concepts. This pedagogical approach, centered on optimiz-029
ing the interplay between opposing perspectives, inspires a030
new direction in knowledge distillation. We propose that,031
much like in Socratic dialogue, fostering disagreement be-032
tween the teacher and student models can drive learning and033
enhance model performance.034

Knowledge distillation traditionally aims to minimize035
the divergence between a large, well-trained teacher model036
and a smaller student model, transferring the teacher’s ex-037

pertise to create a compact, deployable version of the origi- 038
nal system [9]. This approach focuses on alignment, where 039
the student learns to emulate the teacher’s soft predictions, 040
thereby inheriting its generalization capabilities. However, 041
this paradigm overlooks the potential benefits of disagree- 042
ment—particularly as a mechanism to explore underrepre- 043
sented or ambiguous aspects of the data distribution [21]. 044
By intentionally optimizing for areas where the student and 045
teacher disagree, we aim to emulate the Socratic process, 046
leveraging conflict as a driver of more robust learning. 047

In this work, we introduce a novel method of data aug- 048
mentation rooted in disagreement. Our approach, Disagree- 049
ment Augmentation (DA), augments training samples to 050
maximize divergence between the student and teacher mod- 051
els. These disagreement-optimized examples challenge the 052
student to reconcile conflicting predictions, encouraging it 053
to develop a more nuanced approximation of the teacher. 054
This method of structured disagreement offers a comple- 055
mentary perspective to traditional distillation methods. 056

Beyond its conceptual motivation, DA is designed with 057
practical advantages. In contrast to standard data augmen- 058
tation, which typically applies predefined transformations 059
(e.g., cropping, rotation, or noise injection) [2], DA gen- 060
erates task-specific augmentations tailored to expose the 061
weaknesses of the student model. This targeted approach 062
encourages the student to learn from its mistakes more ef- 063
fectively, leading to improved generalization and robust- 064
ness. Moreover, DA aligns with recent efforts in self- 065
supervised learning and contrastive learning, where the in- 066
troduction of difficult training examples has been shown to 067
enhance representation learning [1, 6]. 068

We demonstrate the effectiveness of this approach 069
across multiple domains, showing that DA improves both 070
generalization and robustness. Our results suggest that 071
disagreement-driven augmentation can serve as a valuable 072
tool in knowledge distillation, offering a novel perspective 073
on how models can learn more efficiently from one an- 074
other. Through this work, we aim to bridge the gap between 075
classical pedagogical insights and modern machine learning 076
methodologies, reinforcing the notion that structured con- 077
flict—when properly harnessed—can be a powerful driver 078
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of progress.079

2. Related Work080

Knowledge distillation, introduced by Hinton et al. [9], tra-081
ditionally aims to transfer knowledge from a large, well-082
trained teacher model to a smaller student model by min-083
imizing the divergence between their outputs. While this084
approach has been effective for model compression, recent085
work suggests that direct output matching may not always086
be optimal [10, 21]. The field has since evolved to recog-087
nize that valuable information exists not just in the teacher’s088
predictions but also in the underlying learning process. Ef-089
ficient knowledge transfer remains a key challenge, particu-090
larly under constraints of limited data or computational re-091
sources.092

Recent studies have explored alternative approaches to093
distillation by considering additional aspects of model be-094
havior beyond simple output alignment [19]. For instance,095
Maroto et al. [14] demonstrated that knowledge distilla-096
tion can improve adversarial robustness, while Goldblum097
et al. [4] showed that adversarially robust teachers yield098
more resilient student networks. Of particular relevance to099
our work is the use of decision boundary information to en-100
hance distillation [8], which conceptually aligns with our101
disagreement-based augmentation method.102

Distillation has also been investigated in the context of103
adversarial defense. Methods such as Adversarial Diffusion104
Distillation [18] and Adversarially Robust Distillation [4]105
demonstrate how transferring robustness properties from a106
teacher to a student can significantly improve model reli-107
ability. These approaches highlight the importance of de-108
cision boundaries in distillation, reinforcing the idea that109
structured exploration of disagreement can lead to better110
knowledge transfer.111

In parallel, advancements in data-free model extraction112
have shown that student models can be trained without113
requiring access to the original training data. Truong et114
al. [20] introduced Data-Free Model Extraction (DFME),115
a technique that synthesizes queries to extract knowledge116
from black-box models. This method builds on data-free117
knowledge distillation by leveraging generative models to118
construct inputs that maximize disagreement between the119
teacher (victim) and student (stolen) models. Similarly,120
Fang et al. [3] proposed Data-Free Adversarial Distillation,121
which employs adversarial techniques to generate informa-122
tive samples for distillation without original data. Both ap-123
proaches align with our work by demonstrating how dis-124
agreement can guide knowledge transfer, reinforcing the125
role of structured model divergence in improving student126
learning.127

Our work builds directly on the Committee Disagree-128
ment Sampling approach introduced by Goldfeder et al. [5].129
Their method identifies regions of the input space where130

knowledge transfer is most needed by analyzing disagree- 131
ment between multiple student models. While their work 132
focused on exact parameter reconstruction, we adapt this 133
technique for the more flexible problem of knowledge dis- 134
tillation. This is closely related to adversarial sample gener- 135
ation, where model disagreement often highlights decision 136
boundary regions susceptible to adversarial attacks [13]. 137
By combining insights from disagreement-based learning 138
and adversarial robustness, our method introduces a novel 139
framework for enhancing knowledge transfer through struc- 140
tured exploration of model differences. 141

3. Methodology 142

3.1. Classification Experimental Setup 143

We conducted our image classification experiments on the 144
CIFAR-100 dataset [11], with three configurations of stu- 145
dent/teacher pairs: Resnet8x4/Resnet32x4, VGG8/VGG13, 146
and ShuffleNet-V2/Resnet32x4 [7, 19]. We used the orig- 147
inal knowledge distillation method proposed by Hinton et 148
al. [9], though our augmentation should be compatible with 149
more modern techniques as well. The student model was 150
trained to minimize the weighted sum of the knowledge dis- 151
tillation loss and cross-entropy loss. Typical image augmen- 152
tations were performed in both the baseline and DA exper- 153
iments, such as random cropping and horizontal flipping. 154
Experiments were run on a NVIDIA RTX 4090. All train- 155
ing runs used an SGD optimizer, a batch size of 64, 240 156
training epochs, an initial learning rate of 0.05, and learn- 157
ing rate decay at epochs 150, 180 and 210. The learning rate 158
here refers to the typical student learning rate, not the DA 159
learning rate α. Both DA experiments and baselines with- 160
out DA were run 5 times each to ensure statistical reliabil- 161
ity, with results reported as the mean and standard deviation 162
across these runs. 163

3.2. Disagreement Augmentation Algorithm 164

Figure 1. Schematic of the recursive DA algorithm. In practice
only one epoch of augmentation occurs per batch.
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The Disagreement Augmentation algorithm is designed to165
optimize input data by emphasizing areas of disagreement166
between a teacher model and a student model. The process167
begins by freezing the weights of both the teacher (T ) and168
student (S) models to ensure that the augmentation process169
only modifies the input batch (I).170

For each iteration of augmentation, the input batch is171
forward-propagated through the teacher and student mod-172
els to compute their respective output logits, denoted as LT173
and LS . These logits are then normalized to ensure they174
are on a comparable scale. The algorithm computes a dis-175
agreement loss l as the negative Mean Squared Error (MSE)176
between the normalized logits of the teacher and student:177
l = −MSE(LS , LT ). This loss function incentivizes maxi-178
mizing the discrepancy between the models’ predictions.179

The disagreement loss is backpropagated to compute180
gradients with respect to the input batch I . These gradi-181
ents are then used to update I directly, employing a fixed182
learning rate α. This process is repeated for a predefined183
number of epochs e, iteratively refining the input batch to184
amplify disagreement between the models.185

Once the iterations are complete, the optimized input186
batch I is returned as the final output of the algorithm, and187
used to train the student in typical knowledge distillation188
fashion. This approach ensures that the augmented data189
emphasizes areas where the teacher and student models di-190
verge, challenging the student model to learn more robust191
and generalizable features.192

Algorithm 1 Disagreement Augmentation Algorithm

Require: Student S, teacher T , input batch I , learning rate
α, epochs e
procedure DA(I, S, T, α, e)

Freeze weights of S and T
for each epoch i in 1 to e do

Forward-propagate I through S and T
Compute logits: LS = S(I), LT = T (I)
Normalize logits: LS ← Normalize(LS), LT ←

Normalize(LT )
Compute disagreement loss: l =

−MSE(LS , LT )
Back-propagate l and compute gradient w.r.t. I
Update I using α

end for
Return I

end procedure

3.3. Policy Distillation Setup193

To extend our method to reinforcement learning environ-194
ments, we modified the original single-environment policy195
distillation methodology introduced by Rusu et al. [17].196
Our setup consists of three main stages: online data col-197

lection, disagreement augmentation, and policy distillation. 198
Both the student and teacher models are 4 layer deep Q- 199
networks (DQNs), with 3 convolutional layers and one feed- 200
forward layer [15]. The teacher DQN consists of 1.6 mil- 201
lion paramaters, while the student has only 1% of that with 202
roughly 16,000 (varies slightly across environments due to 203
different action spaces). Students are trained for 500 epochs 204
with a batch size of 32, a learning rate of 0.0001, and an 205
SGD optimizer. 206

3.3.1. Online Data Collection 207

In this stage, a teacher pre-trained on an Atari environment 208
is used to collect environment states. We used pre-trained 209
teachers from RL Baselines3 Zoo [16]. The teacher inter- 210
acts with the environment to generate trajectories, which 211
are stored in a replay memory buffer. These stored states 212
serve as the foundation for training the student. During 213
each epoch of distillation, 54,000 environment states are 214
generated, each consisting of 4 contiguous frames of the 215
Atari game. The replay buffer has a capacity of 540,000 216
states, which it maintains by removing excess states when 217
new ones are added in a first-in-first-out manner. 218

To ensure diversity in the collected training data, we 219
introduced a 5% exploration rate during data collection. 220
Specifically, for each action taken by the teacher model, 221
there is a 5% probability of selecting a random action in- 222
stead of the teacher’s optimal policy decision. This con- 223
trolled exploration helps capture a broader range of environ- 224
ment states, including suboptimal transitions that can im- 225
prove the robustness of the student model. 226

3.3.2. Disagreement Augmentation 227

Once a batch of environment states is retrieved from the re- 228
play memory, we apply DA to emphasize areas in the state 229
space where the student diverges from the teacher. The 230
only difference between this instance of DA and what we 231
used in the image classification setting is that we maxi- 232
mize the Kullback-Leibler divergence (KLD) between the 233
student and teacher Q-values rather than the mean squared 234
error. We did this to remain consistent with the policy distil- 235
lation setting, as using KLD as the distillation loss is shown 236
to improve performance over MSE [17]. For each batch of 237
states, with probability p = 0.3 they undergo 1 epoch of 238
DA with α = 0.001 for Ms. Pacman and Space Invaders 239
and α = 0.00001 for Beam Rider. 240

3.3.3. Policy Distillation 241

Following the DA step, the policy distillation process takes 242
place. The student policy is trained on the disagreement- 243
augmented states, minimizing the KL divergence loss be- 244
tween its action distribution and that of the teacher. Unlike 245
Rusu et al., who used RMSProp, we instead optimize the 246
student’s policy using SGD. This results in a training pro- 247
cedure that is more sensitive to the nuanced differences be- 248
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tween the teacher and student policies, ensuring improved249
convergence dynamics.250

4. Experimental Results251

Figure 3. Examples of CIFAR-100 images undergoing various
epochs of DA. The legend shows the ground truth target label,
the Resnet8x4 student model’s top 3 predictions, the Resnet32x4
teacher model’s top 3 predictions, and the MSE loss between the
student and teacher logits.

4.1. Hyperparamater Search for Classification252

To optimize DA for our classification, we conducted a253
Bayesian hyperparameter search with Hyperband early254
stopping [12] over three hyperparameters: the number of255
epochs of augmentation per batch e, the learning rate of256
augmentation α, and the probability of augmentation per257
batch p. The search was conducted using a Resnet32x4258
teacher and a Resnet8x4 student, with the goal of maximiz-259
ing student validation accuracy. It found the ideal parame-260
ters to be e = 1, α = 0.01778, and p = 0.7374. These are261
the parameters used in all classification experiments.262

4.2. Classification Results263

The results in Table 1 demonstrate that DA consistently264
improves student model performance across different ar-265
chitectures. For the Resnet32x4 to Resnet8x4 transfer,266
DA increases validation accuracy from 73.66% ± 0.26 to267

Table 1. Validation accuracy of baseline student models and stu-
dent models trained with DA.

Teacher Student KD (%) DA (%)

Resnet32x4 Resnet8x4 73.66± 0.26 74.59 ± 0.24
VGG13 VGG8 73.33± 0.25 73.76 ± 0.29
Resnet32x4 ShuffleNet-V2 71.67± 0.34 73.70 ± 0.19

74.59% ± 0.24, showing a clear performance gain. Simi- 268
larly, for the VGG13 to VGG8 transfer, DA yields a mod- 269
est improvement from 73.33% ± 0.25 to 73.76% ± 0.29. 270
The most significant relative improvement occurs in the 271
Resnet32x4 to ShuffleNet-V2 distillation, where DA raises 272
accuracy from 71.67% ± 0.34 to 73.70% ± 0.19, suggest- 273
ing that DA is particularly beneficial when distilling into 274
more compact, efficiency-oriented architectures. These re- 275
sults highlight that disagreement-driven augmentation pro- 276
vides a complementary boost to standard knowledge distil- 277
lation by encouraging more informative training dynamics. 278
The improvements observed across all tested student mod- 279
els suggest that DA is a robust and effective augmentation 280
strategy for classification tasks. 281

4.3. Robustness to Disagreement Augmented Sam- 282
ples 283

Figure 4. Validation accuracy an DA augmented validation set vs.
number of epochs of augmentation.

We hypothesized that training a student model with dis- 284
agreement augmented samples would result in a more ro- 285
bust model. To investigate, we evaluated the validation 286
accuracy of a pre-trained Resnet32x8 teacher and a DA- 287
trained Resnet8x4 student under varying levels of augmen- 288
tation intensity, measured by the number of augmentation 289
epochs. Here, augmentation occurs on the validation set 290
to ensure that the evaluation reflects whether training with 291
disagreement-augmented samples leads to improved robust- 292
ness against such perturbations. Additionally, we compared 293
the performance of the student model with its teacher to as- 294
sess whether the knowledge distillation process, combined 295
with disagreement-based augmentation, enables the student 296
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Figure 2. Policy distillation with Disagreement Augmentation.

to achieve similar or superior resilience in handling these297
adversarial-like inputs. This approach allowed us to vali-298
date the hypothesis that disagreement-driven training fos-299
ters a more adaptable and robust student model.300

4.4. Policy Distillation Results301

We evaluated DA in the policy distillation setting across302
three Atari environments: Beam Rider, Ms. Pacman, and303
Space Invaders. The goal of this experiment was to assess304
whether DA could improve the performance of a distilled305
student policy compared to standard behavior cloning using306
policy distillation.307

The teacher policy in each case was a DQN model308
trained on the respective environment, while the student was309
a significantly smaller DQN model. The results are summa-310
rized in Table 2.311

The results demonstrate that incorporating DA consis-312
tently improves student policy performance across all tested313
Atari environments. In Beam Rider, DA increases the314
student’s average score from 2105.46 to 2663.53, raising315
its relative performance from 51.62% to 65.30% of the316
teacher’s score. Similarly, in Ms. Pacman, DA enhances the317
student’s performance from 3094.92 to 3341.92, yielding a318
relative improvement from 117.44% to 126.81%. The most319
notable increase occurs in Space Invaders, where DA raises320
the student’s performance from 585.24 to 637.02, boost-321
ing the relative score from 112.24% to 122.17%. These322
results suggest that disagreement-driven augmentation en-323
hances policy distillation by exposing the student to more324
informative training samples, leading to improved general-325
ization and robustness.326

4 frame stack from Beam Rider after typical preprocessing for
Atari environments (downsized to 84× 84, grayscale).

The same 4 frame stack after one iteration of DA, with α =
0.00001.

Absolute difference between original and augmented frames, nor-
malized to the range [0, 255] for visualization. This is equiva-
lent to the (normalized) absolute value of the gradient of the input
frames with respect to the negated KLD loss.

Figure 5. Example of how DA affects environment states. This
was generated with a pre-trained teacher and a student trained with
DA.

5. Discussion 327

5.1. Interpretation of Results 328

The results of our experiments demonstrate that incorporat- 329
ing DA into the knowledge distillation process significantly 330
improves the generalization and robustness of student mod- 331
els. Across all tested configurations, models trained with 332
DA consistently outperformed their baseline counterparts in 333
both classification and reinforcement learning tasks. This 334
suggests that the structured introduction of disagreement 335
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Table 2. Policy distillation results across different Atari environments. Scores are calculated as average scores over 1000 episodes. The
relative score represents student performance as a percentage of the teacher’s performance.

Env Method Teacher Score Student Score Relative Score

Beam Rider PD 4078.726 2105.460 51.62%
Beam Rider PD + DA 4078.726 2663.526 65.30%

Ms. Pacman PD 2635.370 3094.920 117.44%
Ms. Pacman PD + DA 2635.370 3341.920 126.81%

Space Invaders PD 521.405 585.235 112.24%
Space Invaders PD + DA 521.405 637.020 122.17%

during training helps the student model better learn nuanced336
representations of the teacher’s decision boundaries.337

In the classification experiments, DA led to improved338
validation accuracy across all student architectures, with339
particularly strong gains in compact models such as340
ShuffleNet-V2. These improvements indicate that DA is341
especially beneficial for lightweight models, where stan-342
dard distillation may struggle to fully capture the teacher’s343
knowledge.344

The reinforcement learning experiments further high-345
light the effectiveness of DA in policy distillation. In346
Atari environments, DA consistently improved student pol-347
icy performance across all tested games, increasing rela-348
tive student scores compared to standard policy distillation.349
Notably, the largest improvements were observed in Beam350
Rider and Space Invaders, where DA enhanced the student’s351
ability to generalize across diverse game states. These re-352
sults suggest that DA is not only beneficial in supervised353
learning but also in reinforcement learning settings, where354
effectively transferring policy knowledge remains a major355
challenge.356

Furthermore, the robustness evaluation confirmed our357
hypothesis that disagreement-driven training fosters re-358
silience to adversarial-like inputs. By augmenting the val-359
idation set to contain disagreement-optimized samples, we360
observed that DA-trained students were better equipped to361
reconcile these challenging inputs, achieving performance362
levels comparable to or surpassing their teachers. The im-363
provements observed in both classification and reinforce-364
ment learning settings demonstrate that DA provides a gen-365
eralizable mechanism for improving knowledge transfer.366

5.2. Comparison with Previous Studies367

Our findings align with and expand upon prior work that368
has explored the role of adversarial robustness in knowledge369
distillation. Although earlier studies, such as Goldblum et370
al. [4], demonstrated the benefits of robust teachers for im-371
proving student resilience, our method extends this concept372
by actively incorporating disagreement between models as373
a training signal. Compared to approaches like adversari-374

ally robust distillation, DA introduces a more generalizable 375
framework that does not rely on predefined attack methods 376
but instead leverages natural divergences between teacher 377
and student predictions. This positions DA as a comple- 378
mentary and scalable strategy for enhancing robustness in 379
distillation tasks. 380

In reinforcement learning, previous work on policy dis- 381
tillation has primarily focused on directly matching teacher 382
policies [17], often struggling to capture uncertainty or out- 383
of-distribution states effectively. Our results suggest that 384
introducing structured disagreement in policy distillation 385
improves knowledge transfer, potentially helping student 386
policies generalize beyond trajectories demonstrated by the 387
teacher. This complements recent studies on uncertainty- 388
aware policy distillation, reinforcing the idea that controlled 389
divergence can be a useful signal in both supervised and re- 390
inforcement learning settings. 391

5.3. Challenges and Limitations 392

Despite its promising results, DA is not without chal- 393
lenges. One limitation is the additional computational cost 394
incurred during the augmentation process, as optimizing 395
input batches over multiple epochs introduces overhead. 396
While this cost was manageable in our experiments with 397
CIFAR-100, scaling to larger datasets or models may re- 398
quire further optimization of the augmentation procedure. 399
Similarly, in reinforcement learning environments, gener- 400
ating disagreement-optimized samples requires additional 401
exploration, which can slow down training if not carefully 402
managed. 403

Another limitation is the reliance on hyperparameter tun- 404
ing to achieve optimal performance. As shown in our hyper- 405
parameter search, the number of augmentation epochs (e), 406
learning rate (α), and probability of augmentation (p) are 407
critical to the success of DA. While our method performed 408
well across multiple settings, the need for manual tuning 409
may limit accessibility. Automating or simplifying this tun- 410
ing process could improve the scalability of the method, 411
particularly for reinforcement learning applications where 412
hyperparameter sensitivity is often high. 413
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5.4. Future Directions414

Future work could address the computational challenges of415
DA by exploring methods to reduce augmentation overhead,416
such as adaptive augmentation strategies that selectively ap-417
ply disagreement-based modifications based on confidence418
thresholds. Additionally, while our reinforcement learning419
experiments demonstrated the benefits of DA in Atari envi-420
ronments, further research is needed to assess its effective-421
ness in more complex RL tasks, such as continuous control422
or multi-agent settings.423

Another promising direction is extending DA to other424
domains, such as natural language processing (NLP) or425
self-supervised learning, where structured disagreement426
could help improve representation learning. For example,427
disagreement-based augmentation could be applied to NLP428
models by modifying token embeddings to create diverse429
training sequences, potentially leading to better generaliza-430
tion in text classification and translation tasks.431

Finally, investigating the theoretical underpinnings of432
disagreement as a learning signal, particularly in the con-433
text of decision boundary exploration, could further refine434
and justify the approach. A deeper understanding of why435
and when DA is most effective could help develop more436
principled augmentation strategies that generalize across a437
broader range of learning tasks.438

6. Conclusion439

6.1. Summary of Findings440

This work introduced Disagreement Augmentation (DA), a441
novel method for improving knowledge distillation by in-442
tentionally optimizing the input to maximize disagreement443
between teacher and student models. Inspired by the So-444
cratic method, DA leverages structured conflict to challenge445
the student model, encouraging it to develop more robust446
and generalizable representations.447

Experimental results on CIFAR-100 demonstrated448
that DA-trained students consistently outperformed base-449
line models in validation accuracy and robustness to450
disagreement-augmented samples. Furthermore, extending451
DA to reinforcement learning environments showed that452
disagreement-driven augmentation significantly enhances453
policy distillation. In Atari games, DA improved student454
policies across all tested environments, increasing their455
ability to generalize beyond the teacher’s demonstrated tra-456
jectories. These results suggest that DA is a versatile aug-457
mentation strategy applicable to both supervised and rein-458
forcement learning tasks.459

6.2. Contributions460

Our primary contributions are as follows:461
• The introduction of Disagreement Augmentation as a462

generalizable data augmentation strategy for knowledge463

distillation across both classification and reinforcement 464
learning. 465

• Empirical validation of DA’s effectiveness, demonstrating 466
improved generalization and robustness across multiple 467
teacher-student configurations in classification tasks and 468
enhanced policy transfer in reinforcement learning. 469

• A conceptual shift in knowledge distillation, emphasiz- 470
ing the role of structured disagreement as a catalyst for 471
learning. 472
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